Yusen Wu, Bujiao Wu, Yanqi Song, Xiao Yuan, Jingbo Wang
"Learning the complexity of weakly noisy quantum states",
ICLR 2025 – International Conference on Learning Representations (31.75% acceptance rate)
Abstract
Quantifying the complexity of quantum states is a longstanding key problem in various subfields of science, ranging from quantum computing to the black-hole theory. The lower bound on quantum pure state complexity has been shown to grow linearly with system size (Haferkamp et al., 2022). However, extending this result to noisy circuit environments, which better reflect real quantum devices, re- mains an open challenge. In this paper, we explore the complexity of weakly noisy quantum states via the quantum learning method. We present an efficient learning algorithm, that leverages the classical shadow representation of target quantum states, to predict the circuit complexity of weakly noisy quantum states. Our al- gorithm is proved to be optimal in terms of sample complexity accompanied with polynomial classical processing time. Our result builds a bridge between the learn- ing algorithm and quantum state complexity, meanwhile highlighting the power of learning algorithm in characterizing intrinsic properties of quantum states.
2024
Qu, Dengke; Matwiejew, Edric; Wang, Kunkun; Wang, Jingbo; Xue, Peng
"Experimental implementation of quantum-walk-based portfolio optimisation",
Quantum Science and Technology (IF 6.568) , vol. 9, pp. 025014, 2024.
Abstract
The application of quantum algorithms has attracted much attention as it holds the promise of solving practical problems that are intractable to classical algorithms. One such application is the recent development of a quantum-walk-based optimization algorithm approach to portfolio optimization under the modern portfolio theory framework. In this paper, we demonstrate an experimental realization of the alternating phase-shift and continuous-time quantum walk unitaries that underpin this quantum algorithm using optical networks and single photons. The experimental analysis confirms that the probability of states corresponding to high-quality solutions is efficiently amplified by increasing the number of phase-shift and quantum walk iterations. This work provides strong evidence for practical applications of quantum-walk-based algorithms such as financial portfolio optimization.
Zhuang, Shengxin; Tanner, John; Wu, Yusen; Huynh, Du Q.; Cadet, Wei Liu Xavier F.; Fontaine, Nicolas; Charton, Philippe; Damour, Cedric; Cadet, Frederic; Wang, Jingbo
"Non-Hemolytic Peptide Classification Using A Quantum Support Vector Machine",
Quantum Information Processing 23 (11), 379, 2024
Abstract
Quantum machine learning (QML) is one of the most promising applications of quantum computation. However, it is still unclear whether quantum advantages exist when the data is of a classical nature and the search for practical, real-world applications of QML remains active. In this work, we apply the well-studied quantum support vector machine (QSVM), a powerful QML model, to a binary classification task which classifies peptides as either hemolytic or non-hemolytic. Using three peptide datasets, we apply and contrast the performance of the QSVM, numerous classical SVMs, and the best published results on the same peptide classification task, out of which the QSVM performs best. The contributions of this work include (i) the first application of the QSVM to this specific peptide classification task, (ii) an explicit demonstration of QSVMs outperforming the best published results attained with classical machine learning models on this classification task and (iii) empirical results showing that the QSVM is capable of outperforming many (and possibly all) classical SVMs on this classification task. This foundational work paves the way to verifiable quantum advantages in the field of computational biology and facilitates safer therapeutic development.
Sotelo, R., Giusto, E., Nakamura, Y., & Wang, J.
"The 2nd Workshop on Quantum in Consumer Technology At IEEE Quantum Week"
IEEE Consumer Electronics Magazine, 13(5), 1-2, 2024; https://doi.org/10.1109/MCE.2024.3407740
Abstract
The 2nd Workshop on Quantum in Consumer Technology, held during the IEEE Quantum Week 2023, continued to explore the integration and application of quantum technologies in consumer electronics. Organized by the Quantum in Consumer Technology Technical Committee (QCT TC) of the IEEE Consumer Technology Society (CTSoc), this year's workshop featured two insightful panels discussing the cutting-edge advancements and applications of quantum technologies that aim to revolutionize consumer products and services.
T Bennett, L Noakes, JB Wang
"Analysis of the non-variational quantum walk-based optimisation algorithm"
arXiv preprint arXiv:2408.06368
Abstract
This paper introduces in detail a non-variational quantum algorithm designed to solve a wide range of combinatorial optimisation problems, including constrained problems and problems with non-binary variables. The algorithm returns optimal and near-optimal solutions from repeated preparation and measurement of an amplified state. The amplified state is prepared via repeated application of two unitaries; one which phase-shifts solution states dependent on objective function values, and the other which mixes phase-shifted probability amplitudes via a continuous-time quantum walk (CTQW) on a problem-specific mixing graph. The general interference process responsible for amplifying optimal solutions is derived in part from statistical analysis of objective function values as distributed over the mixing graph. The algorithm's versatility is demonstrated through its application to various problems: weighted maxcut, k-means clustering, quadratic assignment, maximum independent set and capacitated facility location. In all cases, efficient circuit implementations of the CTQWs are discussed. A penalty function approach for constrained problems is also introduced, including a method for optimising the penalty function. For each of the considered problems, the algorithm's performance is simulated for a randomly generated problem instance, and in each case, the amplified state produces a globally optimal solution within a small number of iterations.
T Bennett, L Noakes, J Wang
"Non-variational Quantum Combinatorial Optimisation"
arXiv preprint arXiv:2404.03167
Abstract
This paper introduces a non-variational quantum algorithm designed to solve a wide range of combinatorial optimisation problems, including constrained and non-binary problems. The algorithm leverages an engineered interference process achieved through repeated application of two unitaries; one inducing phase-shifts dependent on objective function values, and the other mixing phase-shifted probability amplitudes via a continuous-time quantum walk (CTQW) on a problem-specific graph. The algorithm's versatility is demonstrated through its application to various problems, namely those for which solutions are characterised by either a vector of binary variables, a vector of non-binary integer variables, or permutations (a vector of integer variables without repetition). An efficient quantum circuit implementation of the CTQW for each of these problem types is also discussed. A penalty function approach for constrained problems is also introduced, including a method for optimising the penalty function. The algorithm's performance is demonstrated through numerical simulation for randomly generated instances of the following problems (and problem sizes): weighted maxcut (18 vertices), maximum independent set (18 vertices), k-means clustering (12 datapoints, 3 clusters), capacitated facility location (12 customers, 3 facility locations), and the quadratic assignment problem (9 locations). For each problem instance, the algorithm finds a globally optimal solution with a small number of iterations.
Y Wu, JB Wang, Y Li
"Quantum Computing for Option Portfolio Analysis"
arXiv preprint arXiv:2406.00486
Abstract
In this paper, we introduce an efficient and end-to-end quantum algorithm tailored for computing the Value-at-Risk (VaR) and conditional Value-at-Risk (CVar) for a portfolio of European options. Our focus is on leveraging quantum computation to overcome the challenges posed by high dimensionality in VaR and CVaR estimation. While our innovative quantum algorithm is designed primarily for estimating portfolio VaR and CVaR for European options, we also investigate the feasibility of applying a similar quantum approach to price American options. Our analysis reveals a quantum 'no-go' theorem within the current algorithm, highlighting its limitation in pricing American options. Our results indicate the necessity of investigating alternative strategies to resolve the complementarity challenge in pricing American options in future research.
E Matwiejew, JB Wang
"Quantum walk informed variational algorithm design"
arXiv preprint arXiv:2406.11620
Abstract
We present a theoretical framework for the analysis of amplitude transfer in Quantum Variational Algorithms (QVAs) for combinatorial optimisation with mixing unitaries defined by vertex-transitive graphs, based on their continuous-time quantum walk (CTQW) representation and the theory of graph automorphism groups. This framework leads to a heuristic for designing efficient problem-specific QVAs. Using this heuristic, we develop novel algorithms for unconstrained and constrained optimisation. We outline their implementation with polynomial gate complexity and simulate their application to the parallel machine scheduling and portfolio rebalancing combinatorial optimisation problems, showing significantly improved convergence over preexisting QVAs. Based on our analysis, we derive metrics for evaluating the suitability of graph structures for specific problem instances, and for establishing bounds on the convergence supported by different graph structures. For mixing unitaries characterised by a CTQW over a Hamming graph on m-tuples of length n, our results indicate that the amplification upper bound increases with problem size like (enlogm).
J Pye, E Matwiejew, A Smith, M Kovalam, JB Wang, L Wen
"Gravitational-wave matched filtering with variational quantum algorithms"
arXiv preprint arXiv:2408.13177
Abstract
In this paper, we explore the application of variational quantum algorithms designed for classical optimization to the problem of matched filtering in the detection of gravitational waves. Matched filtering for detecting gravitational wave signals requires searching through a large number of template waveforms, to find one which is highly correlated with segments of detector data. This computationally intensive task needs to be done quickly for low latency searches in order to aid with follow-up multi-messenger observations. The variational quantum algorithms we study for this task consist of quantum walk-based generalizations of the Quantum Approximate Optimization Algorithm (QAOA). We present results of classical numerical simulations of these quantum algorithms using open science data from LIGO. These results show that the tested variational quantum algorithms are outperformed by an unstructured restricted-depth Grover search algorithm, suggesting that the latter is optimal for this computational task.
J Tanner, J Pye, J Wang
"Learning out-of-time-ordered correlators with classical kernel methods"
arXiv preprint arXiv:2409.01592
Abstract
Out-of-Time Ordered Correlators (OTOCs) are widely used to investigate information scrambling in quantum systems. However, directly computing OTOCs with classical computers is often impractical. This is due to the need to simulate the dynamics of quantum many-body systems, which entails exponentially-scaling computational costs with system size. Similarly, exact simulation of the dynamics with a quantum computer (QC) will generally require a fault-tolerant QC, which is currently beyond technological capabilities. Therefore, alternative approaches are needed for computing OTOCs and related quantities. In this study, we explore four parameterised sets of Hamiltonians describing quantum systems of interest in condensed matter physics. For each set, we investigate whether classical kernel methods can accurately learn the XZ-OTOC as well as a particular sum of OTOCs, as functions of the Hamiltonian parameters. We frame the problem as a regression task, generating labelled data via an efficient numerical algorithm that utilises matrix product operators to simulate quantum many-body systems, with up to 40 qubits. Using this data, we train a variety of standard kernel machines and observe that the best kernels consistently achieve a high coefficient of determination (R2) on the testing sets, typically between 0.9 and 0.99, and almost always exceeding 0.8. This demonstrates that classical kernels supplied with a moderate amount of training data can be used to closely and efficiently approximate OTOCs and related quantities for a diverse range of quantum many-body systems.